Manufacturer
NSK
NSK

Found 7,821 products

1200JC3
NSK

Self Aligning Ball Bearing; 10MM Bore; Shaft Mount; 30MM Outside Diameter; 9MM Inner Race Width; 9MM Outer Race Width; Open; Steel Cage; Double Row of Balls; ABEC 1 | ISO P0; C3-Loose

Quick Quote

629VV
NSK

Single Row Ball Bearing; 9MM Bore; 26MM Outside Diameter; 8MM Outer Race Width; 2 Seals; ABEC 1 | ISO P0; No Filling Slot; No Snap Ring; C0-Medium Internal Clearance; Steel Cage

Quick Quote

232/530CAG3MKC3W507
NSK

2 ROWS 355 MM W 10100000 N DYNAMIC/18800000 N STATIC LOAD

Quick Quote

32016XJP5
NSK

Assembly; Class C Precision; 80MM Bore; 125MM Outside Diameter; 29MM Assembly Width; Single Row of Rollers

Quick Quote

NU1018M
NSK

Cylindrical Roller Bearing; 90MM Bore; Straight; 140MM Ouside Diameter; 24MM Width; Brass Cage; RBEC 1 | ISO P0; Single Row; Inner Ring - Both Sides Separable; No Snap Ring; Relubricatable; Retainer; C0-Medium Internal Clearance

Quick Quote

R8DDC3
NSK

Single Row Ball Bearing; 1/2" Bore; 1-1/8" Outside Diameter; 5/16" Outer Race Width; 2 Seals; ABEC 1 | ISO P0; No Filling Slot; No Snap Ring; C3-Loose Internal Clearance; Steel Cage

Quick Quote

22236CDE4C4
NSK

Spherical Roller Bearing; 180MM Straight Bore; 320MM Outside Diameter; 86MM Width; C4-Extra Loose Clearance; Shaft Mount; Double Row of Spherical Roller Bearing; Steel Cage Material; Open Enclosure; Relubricatable

Quick Quote

M5317TV
NSK

Cylindrical Roller Bearing; 4.273" Bore; Straight; 7.087" Ouside Diameter; 2-7/8" Width; Steel Cage; RBEC 1 | ISO P0; Single Row; No Separable; No Snap Ring; Relubricatable; Retainer; C0-Medium Internal Clearance

Quick Quote

23030CDE4C3
NSK

Spherical Roller Bearing; 150MM Straight Bore; 225MM Outside Diameter; 56MM Width; C3-Loose Clearance; Shaft Mount; Double Row of Spherical Roller Bearing; Steel Cage Material; Open Enclosure; Relubricatable

Quick Quote

688DD
NSK

Single Row Ball Bearing; 8MM Bore; 16MM Outside Diameter; 5MM Outer Race Width; 2 Seals; ABEC 1 | ISO P0; No Filling Slot; No Snap Ring; C0-Medium Internal Clearance; Steel Cage

Quick Quote

ItemManufacturerPriceStockDelivery
1200JC3

1200JC3

Self Aligning Ball Bearing; 10MM Bore; Shaft Mount; 30MM Outside Diameter; 9MM Inner Race Width; 9MM Outer Race Width; Open; Steel Cage; Double Row of Balls; ABEC 1 | ISO P0; C3-Loose

NSK

Quick Quote

629VV

629VV

Single Row Ball Bearing; 9MM Bore; 26MM Outside Diameter; 8MM Outer Race Width; 2 Seals; ABEC 1 | ISO P0; No Filling Slot; No Snap Ring; C0-Medium Internal Clearance; Steel Cage

NSK

Quick Quote

232/530CAG3MKC3W507

232/530CAG3MKC3W507

2 ROWS 355 MM W 10100000 N DYNAMIC/18800000 N STATIC LOAD

NSK

Quick Quote

32016XJP5

32016XJP5

Assembly; Class C Precision; 80MM Bore; 125MM Outside Diameter; 29MM Assembly Width; Single Row of Rollers

NSK

Quick Quote

NU1018M

NU1018M

Cylindrical Roller Bearing; 90MM Bore; Straight; 140MM Ouside Diameter; 24MM Width; Brass Cage; RBEC 1 | ISO P0; Single Row; Inner Ring - Both Sides Separable; No Snap Ring; Relubricatable; Retainer; C0-Medium Internal Clearance

NSK

Quick Quote

R8DDC3

R8DDC3

Single Row Ball Bearing; 1/2" Bore; 1-1/8" Outside Diameter; 5/16" Outer Race Width; 2 Seals; ABEC 1 | ISO P0; No Filling Slot; No Snap Ring; C3-Loose Internal Clearance; Steel Cage

NSK

Quick Quote

22236CDE4C4

22236CDE4C4

Spherical Roller Bearing; 180MM Straight Bore; 320MM Outside Diameter; 86MM Width; C4-Extra Loose Clearance; Shaft Mount; Double Row of Spherical Roller Bearing; Steel Cage Material; Open Enclosure; Relubricatable

NSK

Quick Quote

M5317TV

M5317TV

Cylindrical Roller Bearing; 4.273" Bore; Straight; 7.087" Ouside Diameter; 2-7/8" Width; Steel Cage; RBEC 1 | ISO P0; Single Row; No Separable; No Snap Ring; Relubricatable; Retainer; C0-Medium Internal Clearance

NSK

Quick Quote

23030CDE4C3

23030CDE4C3

Spherical Roller Bearing; 150MM Straight Bore; 225MM Outside Diameter; 56MM Width; C3-Loose Clearance; Shaft Mount; Double Row of Spherical Roller Bearing; Steel Cage Material; Open Enclosure; Relubricatable

NSK

Quick Quote

688DD

688DD

Single Row Ball Bearing; 8MM Bore; 16MM Outside Diameter; 5MM Outer Race Width; 2 Seals; ABEC 1 | ISO P0; No Filling Slot; No Snap Ring; C0-Medium Internal Clearance; Steel Cage

NSK

Quick Quote

Mechanical Components

General Guide & Overview

Mechanical components are essential building blocks that form the foundation of machines and work-producing devices. They play a crucial role in transforming input force into useful output, facilitating various functions and movements. From gears and bearings to rotaries and fasteners, these components work together to reduce friction, carry loads, and efficiently convert input to output speed ratios.

When it comes to materials, mechanical components are manufactured using a wide range of materials, including steel, plastic, and aluminum. The choice of material depends on the specific function and requirements of the equipment in which they are used.

Now, let's take a closer look at some examples of mechanical components:

Gears: These toothed wheels transmit power and change the rotation speed between two axes.

Bearings: They reduce friction and ensure smooth movement by supporting loads and enabling rotation.

Shafts: These cylindrical rods transmit torque and rotational motion.

Fasteners: Nuts, bolts, and screws hold components together and provide structural stability.

Belts: These flexible loops transmit power and motion between pulleys.

These are just a few examples, and there are countless other mechanical components used in various machines and devices. Understanding the importance and function of these components is crucial for anyone involved in mechanical engineering, machine design, or maintenance.

Types of Mechanical Components

When it comes to mechanical systems, there are two main types of components: general-purpose and special-purpose.

General-Purpose Components

General-purpose components are the basic building blocks in many machines and play a crucial role in various applications. These components, such as fasteners, chains, shafts, bearings, and belts, perform the same function regardless of the specific application. They come in standardized sizes and shapes, making them versatile and widely used in a range of mechanical systems.

Special-Purpose Components

On the other hand, special-purpose components are specifically designed for particular machine applications. These components, like turbine blades and pistons, are custom-made to meet the unique requirements of a specific machine or system. They are integral to the overall design and often tailored to optimize performance and efficiency. For example, ship engines may feature different designs and sizes of turbine blades to accommodate various types of engines.

Understanding the distinction between general-purpose and special-purpose components is essential in mechanical engineering and design. Both types play important roles in the functionality and efficiency of mechanical systems, ensuring they meet specific requirements and perform their intended tasks effectively.

Actuators, Positioning Systems, and Machine Design Principles

Actuators play a vital role in the movement of other devices. When it comes to actuator components, designers frequently opt for electric actuators due to their diagnostic ease, cleanliness, and controllability. These devices offer excellent performance in terms of energy efficiency, acceleration, and speed, making them a preferred choice in many applications. Another type of actuator component is the electromagnet, which utilizes electric current to generate a magnetic field. This technology finds extensive use in electric motors and generators.

Screw jacks, on the other hand, are mechanical actuator components that operate by turning a lead screw to lift heavy weights. They provide the flexibility to be operated electrically, hydraulically, or pneumatically, depending on the specific requirements of the application. Linear actuators are another type of actuator commonly used to convert energy into straight-line movement. Meanwhile, hydraulic cylinders employ pressurized fluid for power transfer, ensuring efficient force generation in various machinery.

When it comes to designing machines, engineers rely on fundamental mechanical design principles to create efficient and reliable systems. One such principle is Occam's Razor, which emphasizes simplicity in design. By eliminating unnecessary complexity, designers can optimize performance and reduce the risk of failure. Symmetry is another crucial factor that engineers consider during the design phase. By ensuring symmetry in the distribution of loads, stress, and forces, they can enhance stability and longevity.

Load paths are also of utmost importance in mechanical design principles. Engineers meticulously analyze the path through which loads are transmitted to distribute them efficiently and minimize the risk of component failure. This approach enhances the overall strength and durability of the machine. By combining these principles and incorporating actuator components judiciously, designers can create robust and high-performing machines tailored to specific applications.

FAQ

Mechanical components are the foundation of machines and work-producing devices. They consist of various machine elements such as gears, bearings, and rotaries, which take input force and change it to perform specific functions, such as reducing friction, carrying loads, and changing input to output speed ratios.

General-purpose components are the basic building blocks of many machines and have standardized sizes and shapes. They perform the same function in different applications. Special-purpose components, on the other hand, are custom-designed for specific machine applications and are integral to the overall design. They are tailored to meet specific requirements, such as in ship engines with different designs and sizes for various types of engines.

Actuators are devices that supply force to move other devices. They are essential components in positioning systems and machines. Electric actuators, for example, are easy to diagnose, cleaner, and offer ease of control. They are selected based on performance metrics like energy efficiency, acceleration, and speed. Other types of actuators include electromagnets, screw jacks, linear actuators, and hydraulic cylinders, each operating through different mechanisms for power transfer and movement.

Design engineers use various mechanical design principles to create efficient and reliable machines. Some fundamental principles include Occam's Razor, which states that the simplest solution is often the best; symmetry, which contributes to balanced forces and aesthetics; and load paths, which ensure efficient force transmission within the machine. These principles play a crucial role in optimizing design and enhancing the performance of mechanical systems.